A M R ITA VIDYALAYAM ANNUALEXAMINATION 2019-20

Class: IX
Marks : 80
Time : 3 hrs

MATHEMATICS

General Instructions:

1. All the questions are compulsory
2. This question paper consists of 40 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

SECTION - A

1. If $x=2, y=1$ is a solution of the equation $2 x+3 y=k$, then the value of k is \qquad .
a) $k=-7$
b) $\mathrm{k}=0$
c) $k=7$
d) None of these
2. Degree of the polynomial $x^{9}+x^{5}+3 x^{10}+6$ is \qquad .
(5, 9, 6, 10)
3. Sum of angles of a quadrilateral is \qquad . $\left(180^{\circ}, 360^{\circ}, 540^{\circ}\right.$, None of these)
4. A linear equation in two variables has \qquad .
(no solution, infinitely many solution, two solutions, one solution)
5. A square and a rhombus are on the same base and between same parallels. Then ratio of their areas are \qquad .
(1:4, 2:1, 1:1, 1:2)
6. In the figure, $\angle \mathrm{APB}=50^{\circ}$, then the measure of $\angle \mathrm{AOB}$ is \qquad .
$\left(25^{0}, 100^{\circ}, 50^{\circ}\right.$, None of these)

7. What will be the distance of the point $(\mathrm{O},-3)$ from the orgin? (0, 3-3, None of these)
8. In $\triangle A B C, \angle B=32^{\circ}, \angle C=73^{\circ}$. Then the measure of $\angle \mathrm{A}$ is \qquad . $\left(90^{\circ}, 73^{0}, 75^{\circ}\right.$, None of these)
9. Area of an equilateral triangle of side 8 cm is \qquad . ($64 \mathrm{~cm}^{2}, 16 \sqrt{3} \mathrm{~cm}^{2}, 8 \sqrt{3} \mathrm{~cm}^{2}$, None of these)
10. Mode of the data $11,12,14,12,10,9,11,12,17$ is \qquad . $(11,12,10,17)$
11. Decimal representation of an irrational number is \qquad .
12. Longest chord of a circle is a \qquad of the circle.
13. Smallest angle of $\triangle \mathrm{PQR}$ is P , then the shortest side is \qquad .
OR
In right triangle DEF , if $\angle \mathrm{E}=90^{\circ}$, then longest side of triangle is \qquad .
14. Volume of a sphere of radius r is \qquad .
15. Two angles whose sum is 90° are called \qquad angles.
16. In a parallelogram ABCD , if $\angle \mathrm{A}=75^{\circ}$ find $\angle \mathrm{C}$.
17. Find the value of the polynomial $5 x^{2}-3 x+7$ at $x=1$.

18 . Find the value of $\frac{7 \sqrt{45}}{3 \sqrt{5}}$.
19. Area of $\triangle A B C$ is $14 \mathrm{~cm}^{2}$. If $A D$ is median to side $B C$, find area ($\triangle A C D$).

OR
Height of parallelogram $A B C D$ is 12 cm . Length of $A B$ is 10 cm . Find ar $(A B C D)$.
20. State SAS congruence rule.

SECTION - B

21. If Mean of $5,9, A, 17$ and 21 is 13 , then find the value of A ?
22. Locate $\sqrt{3}$ on the number line.
23. Verify whether 2 and 0 are zeroes of the polynomial $x^{2}-2 x$.
24. Write any two solution of equation $4 x+3 y=12$.
25. A chord of length 10 cm is at a distance of 12 cm from the centre of circle. Find radius of the circle.

OR
Prove that equal chords of a circle subtend equal angles at centre.
26. In figure, lines PQ and RS intersect each other at point O , if $\angle \mathrm{POR}: \angle \mathrm{ROQ}=5: 7$. Find all the angles.

OR

In figure, if $x+y=w+z$, then prove that $A O B$ is a line.

SECTION - C
27. 1500 families with 2 children were selected randomly and the following data were recorded.

Number of girls in a family	2	1	0
Number of families	475	814	211
2 - IX Math			

Compute the probability of a family, chosen at random having
a) 2 girls.
b) 1 girl.
c) no girl.
28. Factorise $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$.
29. Prove that parallelograms on the same base and between same parallels are equal in area.
30. If $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .

OR
In the figure, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.

31. Evaluate using suitable identities.
a) $(x-3)(x+5)$
b) $(102)^{3}$

OR
a) State remainder theorem.
b) Find the remainder when $x^{4}+x^{3}-2 x^{2}+x+1$ is divided by $x-1$.
32. Taxi fare in a city is as follows. For the first km, the fare is ₹ 8 and for subsequent distance it is ₹ 5 per km, taking the distance covered as x km and total fare as $₹ \mathrm{y}$, write a linear equation for this information and draw its graph.
33. Plot the points $\mathrm{A}(-1,1), \mathrm{B}(5,1), \mathrm{C}(5,6), \mathrm{D}(-1,6)$ in the cartesian plane. Identify the figure ABCD .
34. The sides of a triangle are in the ratio $3: 4: 5$. If the perimeter of the triangle is 360 m , find its area using Heron's formula. Also find the cost of fencing the triangle with barbed wire at the rate of ₹ 2 per metre.

OR
A triangular park in a city has dimensions $30 \mathrm{~m}, 26 \mathrm{~m}$ and 28 m . A gardener has to plant grass inside it at $₹ 1.50$ per m^{2}. Find the amount to be paid to the gardener.

SECTION - D

35. A cubical box has each edge 10 cm and another cuboidal box is 12.5 cm long, 10 c m wide and 8 cm high.
a) Which box has greater lateral surface area and by how much?
b) Which box has smaller total surface area and by how much?
36. In a city, the weekly observations made in a study on the cost of living index are given in the following table.

Cost of living index	Number of weeks
$140-150$	5
$150-160$	10
$160-170$	20
$170-180$	9
$180-190$	6
$190-200$	2
Total	52

Draw a frequency polygon for the data above.
OR
Draw a Histogram for the following data.

Daily wages	$150-200$	$200-250$	$250-300$	$300-350$	$350-400$
No of workers	48	32	56	40	16

37. Construct a triangle ABC in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm}$.

OR
Construct a triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm}$.
38. Prove that $\frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}=0$
39. In $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on same side of BC . If AD is extended to intersect BC at P , show that

a) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
b) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
c) AP bisect $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
d) AP is the perpendicular bisector of BC .

OR
AB and CD are respectively the smallest and longest side of a quadrilateral ABCD . Show that $\angle \mathrm{A}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{D}$.

40. A rhombus shaped field has green grass for 18 cows to graze, which caused harm to the field. If each side of rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting? If farmer reduces the numbers of cows to 10 to avoid overgrazing, what value is depicted by him and now what area does each cow get?

